Robust Image Segmentation Applied to Magnetic Resonance and Ultrasound Images of the Prostate Soumya
نویسنده
چکیده
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary contribution of this thesis is in adopting a probabilistic learning approach to achieve soft classification of the prostate for automatic initialization and evolution of a shape and region prior deformable models for prostate segmentation in TRUS images. Two deformable models are developed for the purpose. An explicit shape and region prior deformable model is derived from principal component analysis (PCA) of the contour landmarks obtained from the training images and PCA of the probability distribution inside the prostate region. Moreover, an implicit deformable model is derived from PCA of the signed distance representation of the labeled training data and curve evolution is guided by energy minimization framework of Mumford-Shah (MS) functional. Region based energy is determined from region based statistics of the posterior probabilities. Graph cut energy minimization framework is adopted for prostate segmentation in MRI. Posterior probabilities obtained in a supervised learning schema and from a probabilistic segmentation of the prostate using an atlas are fused in logarithmic domain to reduce segmentation error. Finally a graph cut energy minimization in the stochastic framework achieves prostate segmentation in MRI. Statistically significant improvement in segmentation accuracies are achieved compared to some of the works in literature. Stochastic representation of the prostate region and use of the probabilities in optimization significantly improve segmentation accuracies. iii te l-0 08 37 72 2, v er si on 1 24 J un 2 01 3
منابع مشابه
Robust Image Segmentation applied to Magnetic Resonance and Ultrasound Images of the Prostate
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary ...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملA survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images
Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variab...
متن کامل